Exact lower and upper bounds on stationary moments in stochastic biochemical systems.
نویسندگان
چکیده
In the stochastic description of biochemical reaction systems, the time evolution of statistical moments for species population counts is described by a linear dynamical system. However, except for some ideal cases (such as zero- and first-order reaction kinetics), the moment dynamics is underdetermined as lower-order moments depend upon higher-order moments. Here, we propose a novel method to find exact lower and upper bounds on stationary moments for a given arbitrary system of biochemical reactions. The method exploits the fact that statistical moments of any positive-valued random variable must satisfy some constraints that are compactly represented through the positive semidefiniteness of moment matrices. Our analysis shows that solving moment equations at steady state in conjunction with constraints on moment matrices provides exact lower and upper bounds on the moments. These results are illustrated by three different examples-the commonly used logistic growth model, stochastic gene expression with auto-regulation and an activator-repressor gene network motif. Interestingly, in all cases the accuracy of the bounds is shown to improve as moment equations are expanded to include higher-order moments. Our results provide avenues for development of approximation methods that provide explicit bounds on moments for nonlinear stochastic systems that are otherwise analytically intractable.
منابع مشابه
Bounds on stationary moments in stochastic chemical kinetics
In the stochastic formulation of chemical kinetics, the stationary moments of the population count of species can be described via a set of linear equations. However, except for some specific cases such as systems with linear reaction propensities, the moment equations are underdetermined as a lower order moment might depend upon a higher order moment. Here, we propose a method to find lower, a...
متن کاملRigorous bounds on the stationary distributions of the chemical master equation via mathematical programming
The stochastic dynamics of networks of biochemical reactions in living cells are typically modelled using chemical master equations (CMEs). The stationary distributions of CMEs are seldom solvable analytically, and few methods exist that yield numerical estimates with computable error bounds. Here, we present two such methods based on mathematical programming techniques. First, we use semidefin...
متن کاملA stochastic version analysis of an M/G/1 retrial queue with Bernoulli schedule
In this work, we derive insensitive bounds for various performance measures of a single-server retrial queue with generally distributed inter-retrial times and Bernoulli schedule, under the special assumption that only the customer at the head of the orbit queue (i.e., a FCFS discipline governing the flow from the orbit to the server) is allowed to occupy the server. The method...
متن کاملStochastic Comparisons of Series and Parallel Systems with Heterogeneous Extended Generalized Exponential Components
In this paper, we discuss the usual stochastic‎, ‎likelihood ratio, ‎dispersive and convex transform order between two parallel systems with independent heterogeneous extended generalized exponential components. ‎We also establish the usual stochastic order between series systems from two independent heterogeneous extended generalized exponential samples. ‎Finally, ‎we f...
متن کاملOn Moments of the Concomitants of Classic Record Values and Nonparametric Upper Bounds for the Mean under the Farlie-Gumbel-Morgenstern Model
In a sequence of random variables, record values are observations that exceed or fall below the current extreme value.Now consider a sequence of pairwise random variables {(Xi,Yi), i>=1}, when the experimenter is interested in studying just thesequence of records of the first component, the second component associated with a record value of the first one is termed the concomitant of that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical biology
دوره 14 4 شماره
صفحات -
تاریخ انتشار 2017